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FOREWORD

The research reported herein was conducted by the
staff of Monsanto/Waslhington University Association under
the sponsorship cf the Advanced Research Projects Agency,
Department of Defense, through a contrac: with the Office
of Naval Research, NC0014-67-C-0218 (formerly N00014-66-C-0045),
ARPA Order No. 876, ONR contract authority NR 356-484/4-13-66,
entitled "Development of High Performance Composites."
The prime contractor is Monsanto Research Corporation.
The Program Manager is Dr. Rolf Bucndahl (Phone 314-694-4721).
The contract is funded for $7,000,000 and expires
30 April, 1972.
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STIFFNESS OF NON-ALIGNED FIBER REINFORCED COMDOESITES

-~

R. E. Lavengood and L. A. Goettler
Monsanto Company

800 N. Lindbergh Blvd.
St. Louis, Missouri 63166

ABSTR2ACT

A general procedure for predicting the average Young's
modulus »f short fiker composites is formulated and applied
to random mat, three-dimensional random prepreqg, and
trancfer moldings. In all cases a uniform strain analysis
agrees closely with experimental data for epoxy composites
reinforced with graphite, stainless steel, and glass fibers.
This reflects a high average stiffness in the composites.

Several limiting cases and specific prediction techniques
appearing i~ the literature are compared for the random
composites. Simple formulas are adequate for predicting
the Young's modulus of these systems. The effects of com-
ponent properties on the random modulus are described.

A new technique is developed for calculating the average
modulus of a general axisymmetric composite by integrating

over the crientation distribution.

(Contribution HPC ;%-141 from the Monsanto/Washington University

Association sponsored by the Advanced Research Projects Agency,
Department of Defense, under Office of Naval Research Contract
No. N00014-67-C-0218.)
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STIFFNESS OF NON-ALIGNED FIBER REINFORCED COMPOSITES
R. E. Lavengood and L. A. Goettler
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Introduction

stiffaess of composites reinforced with short fibers. The
elastic properties of specically orthotropic composites in which

fibers are well aligned either parallel or Ferpendicular to the

and fiber loading by equations reporteg by Halpin (1). However,
this is an artificial situation for sncrt fibers, which cannot
eacily be put into a high degree of alignment. Instead, practical
moladings usuallwy contain a wide distributior. of fiber orientation
angles. The degree to which orientation can vary is illustrated
by the polisheq longitudinal Section of a flow moldad part,

shown in Figure 1.

The purpose of this paper is to discuss, in general, the means
for integrating over the distribution of fiber angles in order to
Predict the Young's mod.lus of the molding. Nonuniform, as well
as random, distributions will be considered. Compar .son of
variols predictions with the measured moduli of €poxy composites
indicates acceptable simplifying assumptions.

Similar treatments have beer. given to the prediction of
stiffness by a laminate approximation (2,3). However, our work ig

lore gener.l, provides a basisg for comparing various averaging
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In this studv the fibere are sufficiently long to give essentially
the same stiffness as continuous reinforcement. This is an
important restriction since the dependence of off-axis etiffness

on the aspect ratio of short fibers is not currently known.

The loss in maximum unidirectional stiffness that occurs from
randomizing the fibers in two and three dimensions to attain isotropy
is illustrated in Figure 2. 1In addition, the random structures
cannot be fabricated with as high a fiber content. Practical limits
to fiber loading are indicated by the end points of the curves.

The large differences which exist among the various types of com-
POosites emphasize the need for careful design.

General Treatment of the Orientation Distribution

The elastic properties of a short fiber composite can be
represented by a weighted linear superpositicn of the stiffness
or compliance contributions of the individual fibers and their
associated matrix. Wwhen the orientation does not vary in the
stress directinn, the averaging takes place over the oriented
"structural units" in the transverse cross-sectional area of the
pPiece. This structural unit may be either microscop.c or macrn-
scopic in scale, depending on the type of composite. 1In tne
microscopic cése, variations in orientation occur between adjaceat
fibers or neighboring groups c= fibers; each of ihese would be
considered a unit. Examples or this t,c- of composite are random
composites, and those in whish the fiber reinforcement tends tc
form a network by extensive crossing. On the other hand, when

a variation in orientation occurs across distances wnich are large




in comparison to a fiber, the structural unit is macroscopic. It
may consist of a bundle of fibers or a grain compcsed of several
bundles. all of which are aligned at the same off-axis orientation.
This type oIl structure typically occurs in injection ¢r transfer
molding with relatively long (1/8" - 1/4") fibers.

The procedur~ for calculating overall Young's modulus of a
composite involves the steps listed below. We take th: approach
of calculating the average longitudinal Young's modulus for a
hypothetical uniaxial tensile stress applied in such a direction
that the structure of the piece is symmei:rical about the axis.

By axisymmetric we mean that there are two orthogonal reflection
pPlanes intersecting the axis. Thus, the resulting structure is
specially orthotropic. Similar behavior would occur in a balanced
symmetric laminate under a pure tensile stress. 1In a more generally
anisotropic structure the bending which would result from macro-
scopic shear coupling would greatly complicate the analysis. Al-
though parts of this same genaral treatment have been followed by
other investigators, we include it not only as a description of

our procedure, but as a convenient outline.

1. Assumption of plane rtress or plane strain.

The elasticity equacions for a compccite can be reduced
to two dimensions by assuming that either the stress or the
strain is zero in the thickness direction. 1In a state of
pPlane stress, the strain in the thickness direction is not
zero, even though it does not appear in the two-dimensional
ratrix equatiuis. To account for the Poisson effects in

this direction, the C-matrix of stiffress elements is reduced

. AR M R 1 YAt T e WG LY
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to a Q-matrix as shown by Tsai (4). Similarly, for com-
pliance the S-matrix must be changed to an R-matrix in a

plane strain situacion.

2. Assumption of uniformity.

It is necessary to assume that all structural elements
in the composite are under either the same stress c¢r the

same strain to simplify the calculations. This can be

justified by noting that uniform stress and uniform strain
reprefent true lower and upper bounds to the elastic be-
havior (5). These solution: are commonly called Reuss and
Voigt analyses, respectively, sfter the first workers to

employ those assumptions.

For reasons to be discussed later, the assumption of
uniform strain ie found to be the more accurate and |
corresponds to averaging over the transvarse croas-sectional

area of a piece. This is in contradiction to some recently

published data (17).
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3. Calcuiation of uniaxial engineering properties.

If the reinforcing fibers have a length-to~-diameter

ratio well

above the critical level, the engineering elastic

constants can be estimated from the properties of the

constituents after the manner of Halpin and Tsai (1):

£11

V12

22

12

where E =

8

t3
h
N

< ¢ <
g3 m
I

(1]
“”SH
N

=E, t Ve (Ef - Em) (1)

= v+ v, (vf - vm) (2)

2vf(R - 1) + (R + 2)

= E
= VeI - Rl + (K + 2V

(3)

=g Ve(K=-1) + (K+1)
i Vel - K + (K+ 1T

(4)

Young's modulus of the matrix

longitudinal Young's modulus of the fibers

fiber volume fraction

Poisson's ratio of the matrix

Poisson's ratio of the fiber

8hear modulus of the matrix

ratio of transverse fiber modulus to matrix modulus
ratio of fiber shear modulus to matrix shear modulus
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In addition,

E
22
AY) 2 a— \Y) (5)
21 Ell 12
and
v,y ¥ 0.2 to 0.3 (6)

for most composites. There is no simple prediction rule for
Voge In these equations xl is taken as the direction of
fiber alignment; the X, X4 plane is isotropic. Some
improvements have been proposed for the above egquations,
Nielsen (6) makes an allowance for the maximum packing of
fibers that becomes important at‘high fiber lcadings. He
also interprets one of the parameters as a generalized
Einstein coefficient, which modifies these eguations for
applications t. nonfibrous reinforcements. Hewitt and
deMalherbe (7) propose an empirical correction to the

dependence of the shear modulus on fiber volume fraction.

4. Conversion of engineering constants to uniaxial stiffness

and compliance.

The stiffness (C or Q matrices) and compliance (§ or R
matrices) are fourth order tensors which can be transformed
throush angular rotations corresponding to the orientation of
the structural element in the composite. The individual
engineering constants cannot be used directly since they do
not possess these properties. The pertinent equations for

converting tc stiffness and compliance are summarized in

. Y T < R I s A gl 4 5ol U T R K R
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Table I. To avoid errors due to the neglect of shear
coupling terms, stiffness elements shouid be used if
uniform strain is assumed, and compliance elanents for

uniform stress.

5. Rotational transformation of the elasticity elements.

Tensor theory provides transformation equations for the
changes in the stiffness and compliance elements as the
structural element is rotated sbout f&a X3 axis from the
in-stress direction through an angle 6 to ity poeition in
the composite. The complete set of equations, appearing
in (4,8), can be reduced for our purposes since the aligned
composite that represents a structural eiement is transversely
isotropic. Ccnsequently, the number of independent elastic
constants is reduced by symmetry considerations. This
includes the elimination of shear coupling terms from the
transformation equations. For these structures a tensile

stress does not induce a macroscopic shear deformation. The

oo ——— - AP

transformation equations required for estimating overall Young's

modulus are

W ,00) = "11 nt 4 (2"12 + u"fﬁ) m?n? (7)
+ W, n*

W2 0) =W, (m‘+ n‘) *("11 + Wy, - uw“)nnzn2 (8)

Wyp(d) = Wy, nt +-(2wiz + uw“)mzn2 + W,y m? (9)

2.2 2 2)2
uw“(e) = (‘"11 - 8"12 + ‘"22)“ n“ + (m -n ) uW“ (10)

.
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wheras

wij Tepresents any elastic eclement: cij' Qij' Rij or sij

u is a factor = 4 for C and Q
= 1 for S and R

m = cos 0
n =gin 6
Only Equation (7) aprlies in three dimensions.

6. Averaging over the orientation distribution.

In every structural element, with orientation § to

the gtress direction,

€ .

6 (11)
Ei = jf]_ Bij (e)qj

vhere

cij = tensorial stiffness element for the same composite
with fibers well aligned at angle 6 to the stress.

sij = corresponding t‘nsorial compliance element.

The response of the composite is obtained by averaging the
responses of all such structural units. For uniform strain

the average stiffness is employed,

6
g, = L & . ¢, . (12)
R TR

Average compliance is used with the uniform stress assumption

mni

- 6
€i=jfl ij ()':l .

(13)
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In these equations,

» N
g (T Sttty

= 72 ¢y ot 00 (14)

=5 T4 oy tey av (15)

where k = index on the structural unit, t

% = the fraction of the total fibers which are oriented
st the angle 0y to the applied stress,

N = the total number of different angles in the compoxite, ¥

f = the probablility density function of ¢, i.e., the 5
orientation distribution function,

V = the volume of the composite,
and similarly for 313' Pquation (14) is useful for simple
distributions where the probability density function is
known, e.g., a random distribution. On the other hand, wher.
0 must be measured as a function of position in a molding,

Equation (15) is more convenient.

7. Calculation of average Ycung's modulus.
The average modulus of the composite, il' is defined by

o, =B g

el = el SEE GEN G 6D OWd 0 GO OO BB

or !
(16)

| S|
™3
[
(]
bt =
Q
[

b

where the l-direction is that of the uniaxial rtensile stress.
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The pertinent equations relatin§ El to the averaged
elasticity elements are shown in Table II for ilqtropic
and speca :lly orthotropic structures. Under certain
conditionzlno entry has been made because the corresponding
relationships are too nonlinear to'pcrmit a closed form
solution for E;.

All of the equations for il do exist for a two
dimensional composite under plane stress, which is the most
useful condition. In three dimensions, averaged stiffness
elements other than 511 cannot be obtained from the simple
equations given previously. The complete orientation
distribution function is bivariate. 8Simpler but less pre-
cise procedures fqr calculati g ii thug ntiligf qnlyjthn
511 stiffness element Ar@ recov:.Janded.

Shear coupling effects can b¢ neglected when there is pzr: per
symmetry and the same elasticity element (stiffness or compliance)
is used in steps 5 and 6. Aftey the angular transformation, but
before averaging over the orie.. -:tion distribution, each
structural element behaves like an off-axis uniaxial composite.

In addition to the shear coupling that occurs in such a generally
orthotropic system, the local shear and normal stresses may &lso
be non-zero. Any conversioan of elasticity elements that neglects
the non-zerc shear coupling ard Poisson effects would cause an

error at this point.

-11 =~
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We will now illustrate the application of the elasticity
equations and averaging techniques to three different types of
composites. These are all practical moldings made from short
fiter reinforced epoxy.

Two Dimensionally Random

The isotropic "rand.m-in-a-plane" structure results when
thir composites are made from a sheet molding compound or
random preforms. In this case £(6), the probabili:y density
function which describes the orientation distribution, is a
constant k, independent of 6, and equal to 2/m. This reduces

Equation (14) to

W, =2 2
Mgy =5 of /Wy (0) ao (17)

MR ™

where W represents any of the four elasticity elements.

TP G

The upper- &nd lower-bound prédictionl of the ltiffnoss‘
ar§ cémpaiod in Table III. The lower bound (Reuss) estimate
for Young's module= is 35-40 percent lower than the corresponding
véigt estimate ir this case. These resulis are obtained by
integrating the appropriate elasticity elements in Zquation (17)

and then conve.ting the result to the Young's modulus, il' by
use of the equations for an isotropic body presented in
Table II. Estirates of the shear modulus and Poisson's ratio
are also given.

With the assumption of plane stress, which is usually
valid for laminates and sheet materials, the two-dimensional

stiffness Q applies under the condition of constant egtrain, !

"'12- |
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Both the Q,, and Q,, ®lements must be averaged. Provious
workers (9,10) have estimated Bl by equating it to 611 alone.
This assumes tnct \1 12 21\ is unity. Although this term is

.98 for aligned composites, 1t-.neglect in the random svstem

causes about a 10 parcent error.

Substituting from Equations (7) and (8),

5. = 2 (T/2
Qi =70l "7 Qy (8) ae
Lz /2 § 2 n/2 | . 2.2
¥ of °11 m dae + < f (2012 + AQ“)m n® ae
2 n/2
tF ol Q,, n! a6 (18)

_2 /2 4, 4 2 /2 . 2 2

(18)

:

Carrying out the integrations gives | o = g

A gonti (912 s 2965) + § ug2 B v -
=79, +%F (°11 + Q2 - ‘066) (1)

The true Voigt estimate for the Young's modulus is then calculated

fcom

giving

= 13 =
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- (Qn * 2°12+°zz)1( Q1 =20, * Oy ¢ 4Q66)
30); ¥ 20, ¥ 30y, + 0

1]
[

(23)
The Reuss-type lowerbound c¢an be derived in a similar
manner by summing compliances rather than stiffnesses.

1.2 /2
E'- mo

LAT}

11 sll(e) dae

- 3( 1 +._1_.)+ 1(’2"12 L ) (24)
S\E; "E,) 8\ TE Gn

Both the upperbound and lowerbound predictions are functions
of the ratio of fiber modulus to tha! of the matrix. A decrease
in Young's modules of the random composites relzcive tc that of a
longitudinally aligned system as the modular ratio increases is
shown graphically in Figure 3. Ell incresses almosi in pioportion
to the fiber modulus in a2 given matrix, but since the modulus of
a random structure is heavily influenced by the transverse
properties, it does uci increase as rapidly.

The calculations are plotted in dimensionless form as El/E11
in order to reduce he number of indeperndent sariables. The
independent variablies that must be specified . re only four: Ef/Bm.
Ver Voo and loading {when the fibars are sufficiently long to
be considered infinitely long, as they are in this case).

Calculations show that there is, in fact, no effect of fiber
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Poisson's ratio for ieotropic fibers over the range of 0.2 to 0.3.

The effect of v is also negligibly small. An increass in v from
3 to .4 causas the small decreases in ﬁl/Ell that are noted in
Table IV. Theré is no variation with the fiber loading in the
ccmposite. Since E\y does not depend on the Poisson coefficients,

the reported changes in El/E11 also apply to il alone.

Since Equations (23) and (24) are somevhat cumbersome to use,
some less precise expressions have been developed. Four »f these
will be compared with the rigorous Voigt and Reuss analyses in
this paper. The first is a simplification of the Vol jt or
constant strain analysis that operates entirely with che Q11
element. Tsai and Pagano have shown that for mos% laminates the

following approximations introduce very small errors (10):

1
Q, = T B Q), = By
Q, ~ 5 E Q,, = E
66 8§ "22 22 22
and with the assumptiorn that g, = 511 .
B, =3 E,, +%E (25)
1 8 11 a “22

The Reuss analysis in Equation (24) can be siiplified in a

manner similar to the Zerivation of Equation (25) Ly assuming

- 3 .
qu 3 322 and v12 ¥

- 15 -




This leads to:

. 11
- 24E,, Ej
By * 78, + 176, (26)
22 11

The equation proposed by HForio and Onogi (11) for two

dimensionally random sheets,

= o (e 1/2 |
F1 (511322) AT

is derived from a&an integration of

E, E,
¥ 11 “22 ; (28

& 2
E11 s8in®6 + E22 cos 0

over the vniform random distribution. This equation is derived by
a simple force balance on an off-axis materia). element and

neglects shearing strains.

Nielser and Chen (1) estimated the modulus of random com-
posites by a technique siailar to that applied to crystals by
Huber and SchmiG (23). They rotationally transformed the compliance,
811, inverted to obtain El (8), and then averaged the latter cver

A

the orientation distribution. Although this work is commonly

regarded as a lowerbound estimate of stiffnese utilizing a uni-

form stress analysis (2), this i3 not the case. The averaging
is done under a uniform strain condition, but differences are iptrc-
duced by the shear coupling and Poisson terms that are ncgylected in

the equating of il(e) with the reciprocal »of §;,(6). fihe off-axie

- 16 -~
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element .n the composite is constrained, so that the local
transverse and shearing stresses are neonzero.

These results are all compared with the rigoroues upperbound
and lowerbound predictions of the random modulus in Figures 4 and 5
for epoxy/glass and epcxy/graphite composites. The hybrid estima-
tions of Horio-Onogi and Nielsen-Chen are seen to fall midway
batweer: the upper and lower bounds. The various analyses for
random rodulus all come into agreement with each other and also

with E,. at very low volume loading, since under cthis condition a

11
sinjle phase of the composite predominates. For the loading range
of interest in composites, the 3/8-5/6 rule is about 10% higher
than the exact Voigt analysis, which is a true upperbound. This
is to be expected becauce of the neglect of the Poisson factor.
The values of the parameters ured Inr calculating the curves
in Figures 4 and 5 are given in Table V. The anisotropy of the
graphite fibers in the epoxy/araphite composites requires some
further approximation in the use of the Halpin-Tsai equations for
the unidirectional properties. Since these equations properly
apply only to isotropic fibers, a diffarent value of the fiber

modulus was used for calculating E., than for Ei ;- Table VI sl.ows

that changes in the transverse fiber stiffness have very little
effect on the predicted random modulus. Our estimate of 4.) x
106 psi for the transverse fiber modulus was obtained by back

calculating from exgerimental data for transverse composites.

Experirental data covering the complete useful range of
fiber loading for glass fiber/epoxy and ¢raphite fiber/epoxy

composites are compared with the equations in Figures ¢ and 7.

- 17 -




The uniaxial engineering constantas were calculated by means of
Equaticas (1-6), using the component properties given in Table V.
Fiber aspect ratio was approcximately 2,000.

The glass data cluster quite tightly between the two
upperbound Voigt predictions, thus Justifying the use of the
coiistant strai; analysis. The lowerbound (Reuss) constant-stress
analysis predicts moduli that are 35 percent low. Since the
simpie 3/8-5/8 rule of Equation (25) is as adequate as the more
cumbersome true Voigt analysis, its use is recommended.

The graphite data are only sligntly below the true
upperbound Voigt prediction, again justifying the constant strain
analysis. 1In this case the 3/8-5/8 rule of Equation (25) is
about 10 percent high, probably due to neglect of the Poisson
factor (1 - 312 321). However, it may still be useful for
its simplicity. The constant-stress predictiun would be 75
percent low for the graphite composite which has a high fiber-
to-matrix modular ratio. Comparison of the two figurazs has
shown the graphite data to fall slightly lower than the glass
data with respect to the corresponding Voigt analysis. Although
this difference is net significant for our composites, it is an
effect of finite fiber length. As the fiber modulus increases,
larger aspect ratios are required to realize the maximum

longitudinal composite stiffness.

3-D Random

A three-dimensionally raidom structure is frequently found
in thick molded parts. In such a composite, fiber rotations may

take place “hirough two orthogonal angles. Consequently,

- 18 -
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bivariable crientation distributions must be used to characterize
the structure. This considerably complicates the averaging
procedure that must be used in calculating the overall stiffness
behavior. Practical stiffness estimations for 3-D random and

a symmetric orthotropic structure are stil) pogsible by adopting
the more approximate methods that have been previously described
for the 2-D case. )

The simplification that is required for trcating three
dimensional structures is to consider all fiber rotations as
being made in the plane containing the fiber in its final
position and the stress direction. Unlike the 2-dimensional
case, there will now be a distribution of these plane. ibout the
stress direction throughout the composite, instead of a single
common plane. By limiting our attention to the angle of
roctation of each orientation element from the stress direction
in its own plane, the problem is reduced to a single variable
éngle. However, we are, by so doing, now restricted to anslyzing
only those property changes that relate only to the one dirsction
common tc all the rotational p.anes, namely the direction of the
applied stress. That is to say, a quasi two-dimsncional analysis
can be applied to the elements °11' Qll’ 811 or Rll‘ Since the

average &, , 522, etc. cannot be so determined, the exact
’

formulae fuor calculating the overall Young's modulus are not useful.

Instead, El must be estimated directiy from the averaged one-one

elasticity component.
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Cox (14) has shown that for a three-dimensional random
structure, the probability density function for the orientatioa
angle equals sin (0). As in the two-dimensional case, we expect
the constunt strain to be preferable and so take an average of Ci1°

- /2 _4 /2 _3 2 /2 _S
511 C11 of mn d6 + (2c12 + ‘CGG) of n“m” 46 + C22 of n-dae

(29)

1 2 8
ECn ¢t I!’(2°12 5 ‘css) * 15 C22¢ (30)

This can be spproximately rewritten in terms of the engineering

constants as

= 1 2 8
Cl1* T By * 15 [2v,,8,, + 46, | + Ts Eaa (31)

4 ' - -3 '- = B
Assuning further that V2 0.25, c66 F’Ezz and c11 E, leads to

E né‘.g (32)

4
1 tw

11 Ea2-
Figure 8 shows a comparison of this prediction with experimental
stiffness data for epoxy reinforced with three dimensionally
random stainless steel fibers. These fibers are isotropic
and have a Young's modulus of 30 x 10° psi and Poisson's ratio
of 0.3. The agreement between experiment and this simple
theoretical equation is good.

A somewhat more accurate estimate of El can be obtained by
foregoing the simplifications that lead to Equaticn (32).

Instead, we rewrite the elasticity components on the right hand

- 20 -
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side of Equation (30) in terms of the engineering constants for
3 transversely isotropic system, as given in Table I. The
identity for 511 is a reduction of the first entry in that table

to an isotropic system.

3 (1'52' )51 2 o3

- e(l-vlz V21)322/15 *c (33)
where *c - (1+v23) (1-v23-2v12 vzl)
Dividing by (1-v232)/¢c and taking

1-v 1-v,,?
= gives

2 v, B G2 8 (112 Va1
Sl YRS [2(1"’23 )+ ‘(1-\» ’)]+ H(l-\» 2 ).22 e
- 23 23

This result, while more complicated than Equation (32), gives
a prediction’for il that is closer to the true Voigt analysis.
(A rigorous closed form solution, as given by Hearmon (§), can be
obtained by other methods for this totally random distribution.)
As an ¢xample, for a glass/epoxy compusite in which the true
Voigt estimate is 2.08 x 10° psi, the 1/5-4/5 rule of Equation (32)
Predicts a value of 2.47 x 105 Pai, which is 19 percent high,
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6 psi.

whereas Equation (34} is only 15 percent high at 2.39 x 10
For this case, the difference is negligibly small, but the method
used to derive Ejuation (34) will be generalized in the next
section to treat the nonuniform symmetric distribution for which
no simple form exists.

The true Reuss estimate for the lowerbound can be e&sily

'éalculut_;ed for both isotropic and orthotropic structures because

the Young's modulus ifl is the reciprocal of §11‘ This can be
calculsted by carrying out the gquasi 2-D analysis as was done for
En in Equation @9. This integration gives

1 i

kA

=8y = [5' 11 % IB (28, + Bgg) + 15 6y, (35)

As with the 2-D lower bound this expression can be simplified by
assuming - /3 E,, and v,, = 1/3. This yields

E - - 'ii‘zz s (36)
In the cise of the example epoxy/glass composite mentioned
previously, the true lowarbound estimate calculated from
Equation (35) is 1.53 x 10 psi, which is 26 percent below the
corresponding Voiyt analysis.

To put the results for random systams into perspective, the
reader is refered back to Pigure 2 where plots of the successful
3/8-5/8 rule for 2-D composites and the 1/5-4/5 rule for 2-D
composites are compared with uniaxial longitudinal and transverse
Young's moduli for glass/epoxy composites.
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Symmetric Nonuniform Distributions

When 4 part is fabricated from bulk molding compound, the
structure is neither well aligned nor rlndqﬁ. A t.hd‘ncy.tovird
good alignment can be obtained by tailoring. the gi;u gioiitry

of the part, but significant angular deviations alwvays nxiﬂf
among the fibers, so that the uniaxial equations eann¢£>bq.
accurately applied. On the other hand, unless the fibers are
extremely short (£/d < 20), enough flow orientation vill'decﬁr
to invalicdate any a-sunptioﬁ of randomness. | |

Ii ths molding has axial lyihptry, and the qato_léca@ion is
also symmetrical about the axis, the fioulting ofipntgtian
pattern will be symmetricsl, zithough mac;ooeopical;y‘nonuaitptn.
Tf the end gate is small, the structure of the ﬁo;diag‘coiprilcl
& core oZ transversely oriented fib,rovnurroundod by an cnytiopo
of orientation parallel to the axig:(IS). A.typical orientation
distribution measured in a 1/4" x 1" x 6" bar- appears in
Pigure 9. It is possible to measure and charictifﬁlq,lucb a
distribution of fiber angles in tori- of ; mean direction and a
standard deviation about that direction as a function of the
coordinats position in the molding (16). Since this is a difficult
and tim: consuming task, it is not recosmmended as a routine
analytical procedure. However, advances ere being made in
relating the expected orientation diatribution to the mold
geometry and molding variables. This will eventually allow ﬁh.
complete a priori prediction of stiffness at the design level.
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The fibor orientation in any plane cut through the molding

£reauently #011lo¥s a norma) distribution. for which the mean

and standard deviation are functions only of position in the

transverse cross-section (see ?ig. 10).
e Rl { %2/ "3)

1 = 2,3

The asimuthal nnqlc about thu axis, 8, (“2' 33), can be calculated
from a knoulﬁdqc ! the ¢~diltributiono in two orthogoial planes
undcr the allunption that these two distributions are 1ndop-ndont.

" This io. 1n prnctico, an- acccptablo assumption for the x, and x,

plan.o. aithough it is not riqorousi" valid. Tha local average
01 at lny poine 4n the eotpouit. is thcn given by

5 (";' ;S g _-.’. ST ‘3)";’2’ 32("2' "3)' '02("2' "3” .

where N is the ncrmal ofstribution of ¢; with mean 31 and

standard deviation l‘ and
i

01(02, 03) is a geometrical relationship d.ri%ad from the
equttionn for spherical coordinate systems, given by

6, = tan™? ({cm ¥, + tan® o, ) (39}
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In a similar manner an elasticity element can alscv be averaged

over the local diltribution as follows:

@

Ryglxge xg) = o S Wy {°1‘°2' ‘3)} N(97) N(¢;5) a9, de; (40)

The local values of either the polar angle or the stiffnesas
element must next be averaged oiéor_thc cross-sectional area of |
_thu -specimen in order to relate to the overalil elastic behavior.
Tf;e resulting overall averages are designated with a donble bar.
The irtegrations are best verformed numerically using a computer.
.. Assuming constant strain, the cn elenent is averagad over

bdtlxﬁ_tl_x_c microscepic, or localr,} and macroscopic variations in

‘the orientntion angle after first divid.‘-_ng by the factor

(1 - \»23)/%, as was done to arrive at Equstion (33) previously.

- E 26,, ¥, 9 [ -
K 4 12 12 ¢ | 2 2.
e 23 1= vj,

1

- Vyg Wan
i +.-_-l3,-25-:,2 rlaint 01] (41)

1= vy

where !'[ggeln is thov operator %AH _.I.

= q{ol(og; 03)}

N(¢,) N(¢,) d, 95 aA
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Figure 11 shows a comparison of this theoretical stiffness
analylisnbascd on measured orientation distributions with the |
measured Young's moduli for bars transfer molded from 40 to 50
v/o of 1/8" E-glase fibers in an epoxy matrix. Although'zome
fiber breakage occurred during molding, the average aspect ratio
in the molded bars was still 200. PFor = fiber-to-matrix modular ’
ratio of only 25, these fibers are sufficiently long to contribute
the same stiffness as a continuous filament. The predicted
moduli are about 13 percent above the maasured values for the
entire rznge of aistributions tested. This discrepancy appears
to arise from the approximate trearment given to the factors of

?oit-on coefficients. Equation (41) implies that the quantity ?
(1 " Va3 "32)/ (1‘ " Viz¥a1 < V2s¥sz = Va3 - Mizv2avar)

is invariant under the ave:aging operatcr r[ { }]

when theze is no a_priori reason to expect such constancy.
Bowever, the utility of the method is greatly aphanced by the '
oblcrvition that. for tre random geometry previously treated, | j

it »2s0 pr-dict- a !hu:g'- modulus about 15 percent higher than
the true Voigt analyaiz. Consequently,

i) a very accurate value for the modulus, within a couple
percent, can be obtained by taking 87 percent of the
result obtazined by this approximates treatment.

ii) the stiffness data obtained or an axisymmetric sample
can be closely desciibed by a Voigt-type analysis that

ussumes congtant strain.

B £ CO GG 0 &S G &8 &0 & N 4 B U B =5
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Discuusion

The experimental measurements of Young's moduius show th~i
for both random ané axisymmerric composites the unifzim strain
anaiysis is accurate to within 15 percent. There are two
structura) characteristics of theve samples that are requisites
for constant-strain averading. ®irst, the overall structure
of the composite must be specially orthotropic with respect
to the load direction. This prevenis the developmeat of
macroscopic shear strains under a tenniln lo24. All structural
elements in a transverse plane will then be under the same
tensile strain. ILocal skaaring striins; which night exist
around the individual structural elements, will be of small

‘ scale and will t..2d to cancel.

Secondly, the averaging must be done onlj over A transverse
plane. If major variatioms in structure ocbqt both across and
along the composits, a dogbl. axyriginq pro¢¢duxo'§§cdugq :
necessary. The equilibrium of forooc rzequires that &ll normal
-nctiois along the axis be under a dnifbrn lozd which, for
constant cross-section, reduces to a uniform stress rather than

uniform strain. The integral in Equation (1%) can be expanded t5

fifdv { f{ A constant 2% constant (42)

where the order of integration is not specified. After
averaging cll' for example, at constant strain over crosa-
sectional area A, the compliance, 811, can be calcul&god or
estimated and then integrated (at constant stress) over the
length dimension, £. But this result is not unique; reversing
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the ordexr of intlgration will change the calculated average

stiffnass.

When the orientation changes occur in one direction

only, Bquation (42) corrertly reduces to the proper Voigt or

Reuss average.

It is olecr for the tr»ngfcr moldings. where no axial

variation in orientaticn occurs, that the averaging should be

carried out in a transverse pla:e under the uniforin strain

ocndition.

This is the Voigt type of anal&aia.

However,

the

sandom coupo.itns ghow an equal distributisa in orientation

of the structural elements both along and perpendicular to the
stress exis,

-of Bgueticn (42) results in eltrer the ordinary Veigt or Reuss

predictions, since the integrand i

would always be a constant.

ne second integration

Unlike the case for transfer

moldings, it is not possible to predetermine the correct

assumption of uniformity.

dowevar, our data on random composites

snow that, to a very close approximation, the Voigt uniform

strain analysis applies to random systems, whereas, depending

on the fiber-to-matrix aodular ratio, the ‘nwerbound Rauss

analysis may be more than 75 percent low.

- 28 =
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Summary and Conclusions

Practical moldings of shor% fiber composites do not have
a high degree of fiber alignment. Instead, the fiber orientation
is nonuniform on either a microscopic or a macroscopic scale in
relation to the mold dimensions. Calculaticn of the average
Young's modulus requires an integration of the elastic constants
across the distribution of fiber orientation angles. A general
procedure is formulated and epplied to three types of composites.
In crdsr to avoid shear effects the structure must either be a
balanced symmetric laminate ur the orientation pattern must be
axisymmetric to the applied tensile stress. Errors from neglected
shear coupling and Poisson terms will arise if the steps in
the averaging procedure are not performed in the proper sequence.

The effects of fiber loading, fiber-to-matrix modular ratio,
and component Poisson coefficients on the Young's modulus of planar
random ccmposites are computed under the assumptions of uniform
stress or uniform strain. 7The stiffness relative to an aligned
composite decreases as the modular ratio increases and the Poisson

coefficients have no significant effect in either case. 1In

comparigon with other theorles, the uniform strain (Voigt) analysis
gives the best agreemert with experimental data on epoxy/glass
and epoxy/graphite composites. Similar equaticns are derived

ror three dimensionally random composites.
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A new technique is developed for analyzinyg stiffness in
nonuniform axisymmetric composites as would be produced by
injection or transfer molding. It can predict the Young's
modulus from measured fiber orientation distributions within
five percent.

In all cases the measured average modulus lies close to
the predicted upperbound, which is based on an acsumption of

uniform strain in the stiffness analyses.
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fable I. Equations for Calculation of the Uniaxial Aligned
pci lasticity Elements from the Engineering Constants

A. Uniform strain; plane strain or 3-p
i (1 ""232) EufVe

€2z "(1 * V2 v21) Ex2Ve

€12 = ¥ (1 e “23) B2 Ve
66 ~ ©12

Ve "(1 2 “23) (1 = Va3 = Yy, “21)

B. Uniform strain; plane stress
Q1 = Ey/%

Q2 = Eyy/¥,
Q2 = vy By /¥
Qg5 = C12
o ~ (1 " V12 "21)
C. Uniform stress; plane strain
Rpp = (1 " V12 v21)/”11
Ra2 = (1 - “232)/322
Ri2 =~ Vi (1 * “23)/311

Rgg = 1/61,

D. Uniform stress; plane stress or 3-D

8, = V/Ey

Sp2 = 1/E,y,

5., = = V2/En

12

L = 1/G = 2
66 / 12 o4

]
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Formulas for the Average Young's Modulus
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Table III

Rigorous Predictions for the Stiffness of a 2-D Random Composite !

{
Bjy = 5.29 x 10% psi Vip = .3 |
- 6 =
Ezz 1.76 x 10" psi Va1 "
6
G12 - .ll'} 10" psi Va3 ™ V3, = .2 '
v/o = 50
. , _ . _ _ |
Assumptions Elasticity El x 1¢ 6 psi G x 10 6 psi v |
Uniform . Plane Element Used
Strain (Voigt) Stvain c ' 2.52 .98 .28 i
Strain - Stress Q 2.66 .98 : .36 i
\
Stress (Reuss) 8traia R 1.60 .61 .32 ,
Stress Stress 8 1.74 .60 44 :
:
Table IV g

Effect of Matrix Poisson's Ratio on the Stiffness of a 2-D Random :
Compoaite

Pexcent decrease in il/zll caused by an increase in the ¥oisson's f
ratio of the matrix, v, from .3 to .4

F'ie,'7'£ E 20 200
Voigt 1.0 0.3
Reuss 2.5 3.6
-~ 36 =

3
4
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Table V _ 2
Component Material Properties for Epoxy/Glass and Epoxy/Graphite
Compositec 3 ’ ; :
Material vy
Parameters zpoxy/PGJ,mil 31?0*!/ ﬂﬂtcul"l B
' . .__Graphite
E, x 107¢, pei 10.5 - 32
B, x 107%, pai .4 < A1
Vg .22 ' .22
m 35 .35
Gy x 1076 6“3 4.0
G, x 1076 .15 .15
m :
*4.1 x 10° psi used for predicting B,, for the composite.
Table VI |
Bffect >f Changes in the Transverse Modulus of Graphite Fiber
on the Stiffness of a 2-D Random Epoxy Composite
Transverse fiber Transverse fiber Composite stiffness
modulus x 10-6, psi modulus relative E)/B;; at 40 v/o loading
'to matrix modulus by Voiqt analysis
1. 2.4 . 369
4.1 10,0 | 377
5. 12.2 «378
10. 24.4 .381
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Figure 1. Polished Longitudinal Section of a Flow Molded Part.
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X, = flow direction during molding

= stress direction during tensile testing

Figure 10. Céordinate System in an Axisymmetric Molding.
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Figure 11. A Comparison of Predicted and Measured Young's Moduli in
Glass Fiber/Epoxy Transfer Molded Bars.



